

PE 9/83

Effectiveness and discontinuation rate of dolutegravir (DTG)-based regimens as either first line or switch antiretroviral therapy (ART): data from the Icona cohort.

A. Mondi¹, A. Cozzi-Lepri², A. Tavelli³, F. Vichi⁴, S. Rusconi⁵, T. Quirino⁶, F. Ceccherini-Silberstein⁷, A. Calcagno⁸, F. Maggiolo⁹, G. Marchetti¹⁰, A. Antinori¹, A. d'Arminio Monforte¹⁰

1. National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, HIV/AIDS Department, Rome, Italy; 2. University College London, Institute of Global Health, London, United Kingdom; 3. Icona Foundation, Milan, Italy; 4. Santa Maria Annunziata Hospital, Unit of Infectious Diseases, , Florence, Italy; 5. ASST FBF-Sacco, DIBIC "L. Sacco", University of Milan, Infectious Diseases Unit, Milan, Italy; 6. ASST della Valle Olona, Unit of Infectious Diseases, Busto Arsizio, Italy; 7. University of Rome Tor Vergata, Department of Experimental Medicine and Surgery, Rome, Italy; 8. University of Turin, Amedeo di Savoia Hospital, Unit of Infectious Diseases, Department of Medical Sciences, Turin, Italy; 9. ASST-PG23, Unit of Infectious Diseases, Bergamo, Italy; 10. ASST Santi Paolo e Carlo, University of Milan, Clinic of Infectious and Tropical Diseases, Department of Health Sciences, Milan, Italy.

Contact information: Annalisa Mondi Institute: National Institute for Infectious

Diseases Lazzaro Spallanzani IRCCS

Email: annalisamondi@hotmail.com

AIDS CONFERENCE Milan, Ital

BACKGROUND:

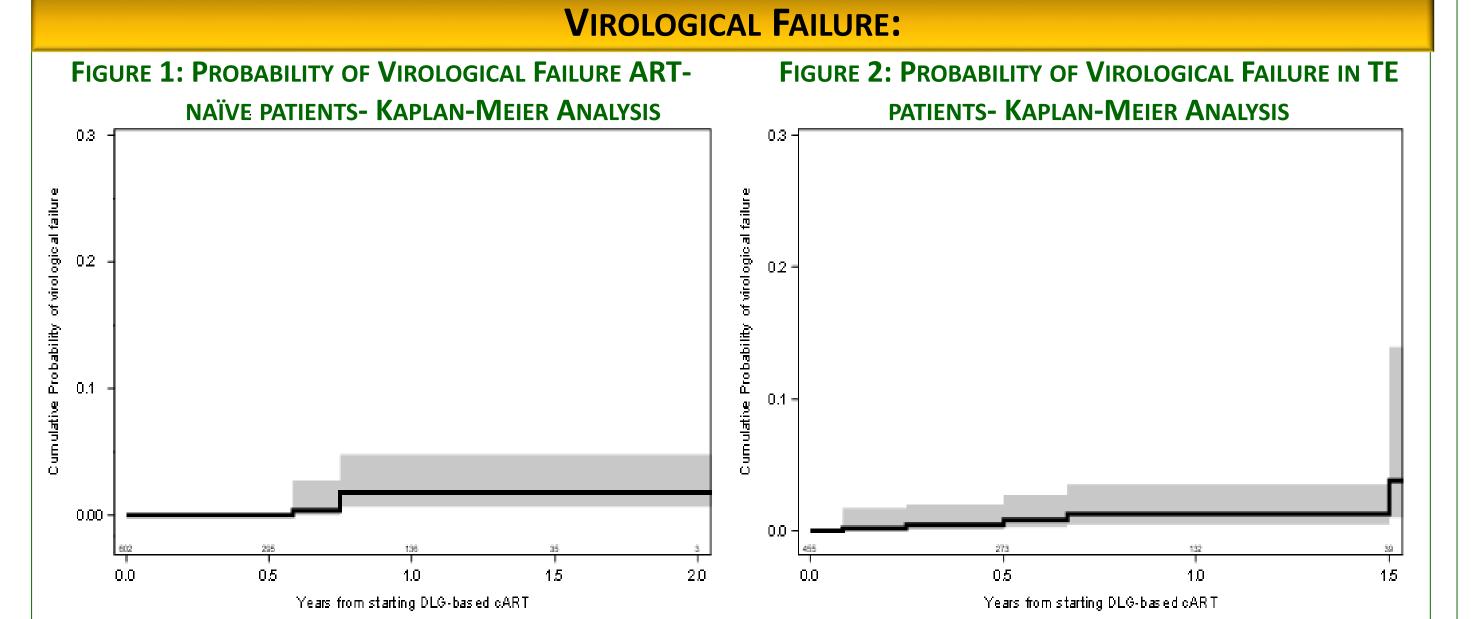
- DTG is now one of the most widely used antiretroviral drugs for treatment of both ART-naïve and experienced HIV patients due to its high efficacy and low potential for drug interactions [1-5].
- Despite the high tolerability demonstrated in clinical trials [1-3], recent observational studies have raised concerns about DTG safety, especially with regard to neuropsychiatric adverse events, with a higher incidence when DTG was associated to abacavir (ABC)^[6-8] and in frail subgroups, as women and older patients ^[8]. However, these data was not uniformly confirmed in real life settings ^[9,10].
- The aim of this study is to estimate the risk of virological failure and discontinuation of DTG-based regimens in treatment-naïve and experienced HIV patients in a large Italian cohort.

METHODS:

- Retrospective, observational, multicentric study analysing data from Icona Foundation Study Cohort
- Icona is a nation-wide cohort including HIV patients, naïve from ARV, prospectively followed in 52 Italian centres
- Both ART-naïve and virologically-suppressed (baseline HIV-RNA < 50 copies(cp)/mL) treatment-experienced (TE) HIV patients enrolled in Icona cohort who initiated, for the first time, a DTG-based regimen from January 2015 to July 2017 were included.
- **DEFINITIONS:**
- ✓ Virological failure (VF): two consecutive HIVRNA>50 cp/mL (for naïve patients, occurring ≥6 months after DTG-start).
- ✓ **DTG discontinuation (DTG-TD)**: discontinuation of DTG from the regimen
- STATISTICAL ANALYSIS:
- ✓ Characteristics at time of DTG start (baseline) were compared between naïve and TE patients using chi-square and non-parametric tests for the median as appropriate.
- ✓ Cumulative probability of VF and DTG-TD for any reason and for toxicity were estimated by Kaplan-Meier analysis in both naïve and TE patients.
- ✓ Predictive factors of DTG-TD for any reason and for toxicity were identified using multivariable Cox proportional hazard model in both groups.

RESULTS:

- 1057 patients were included (602 ART-naïve, 455 TE) who started DTG mainly in a standard triple ARTregimen (96% in ART-naïve group; 67% in TE group) [Table 1].
- VIROLOGICAL FAILURE:
- ✓ In NAÏVE GROUP occurred in 4 patients (0.7%) with a 1-year probability of 1.8% (95%CI:0.0-3.6) [Fig.1]
- ✓ In **TE GROUP** occurred in 5 patients (1%) with a 1-year probability of 1.3% (95%CI:0.0-2.7) [Fig.2]
- **DTG DISCONTINUATION:**
- ✓ In NAÏVE GROUP:


21 patients (3.5%) stopped DTG, 12/21 for toxicity (57%) [Fig. 5]. The 1-year probability of DTG-TD for any reason and for toxicity was **4.6%** (95%CI: 2.6-6.7) and **2.5%** (95%CI: 0.9-4.2), respectively [Fig. 3]. At multivariable analysis, female gender and higher baseline CD4 cell count showed a trend toward significance as a predictive factor of DTG-TD for any reason (aHR 5.32, p=0.059 and aHR 0.73, p=0.069, respectively) [Table 2].

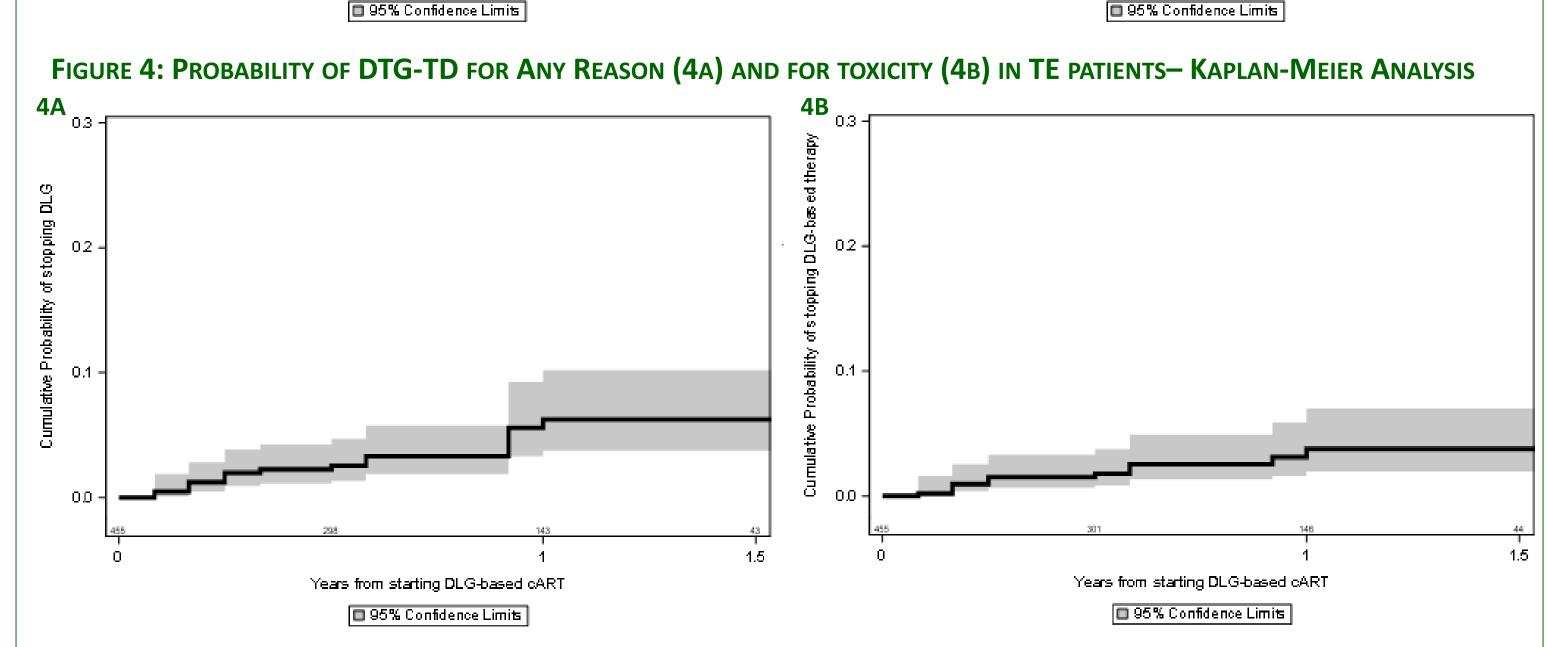
✓ In **TE GROUP**:

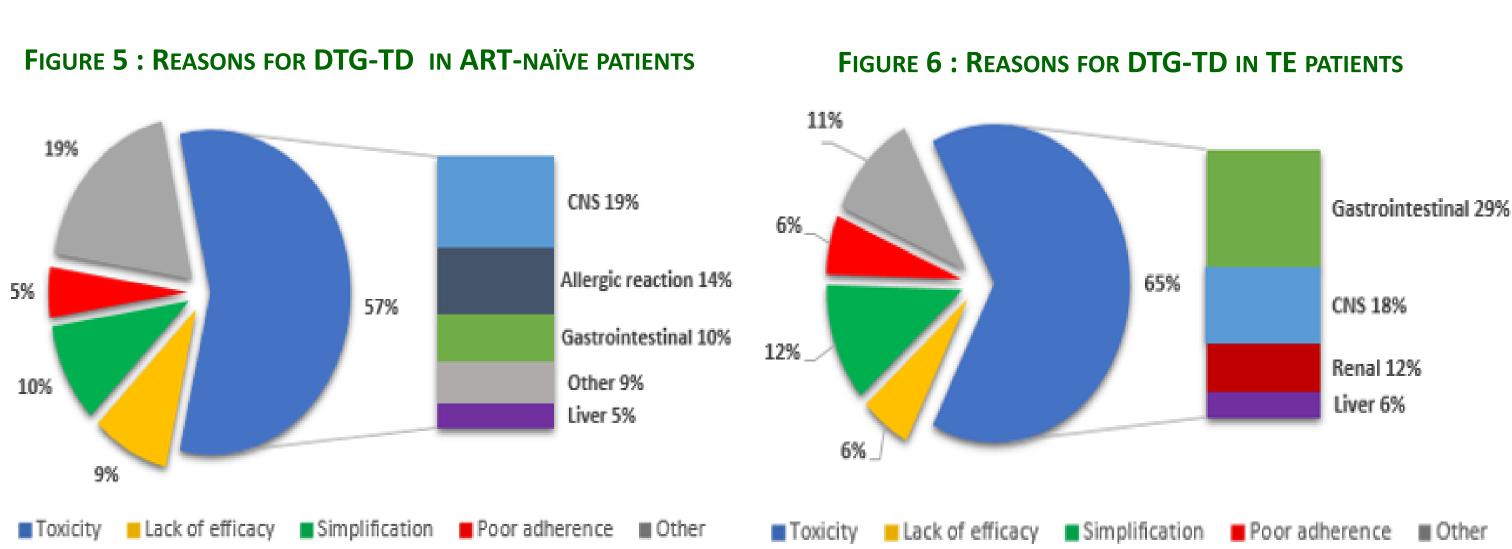
17 patients (3.7%) discontinued DTG, 11/17 (65%) for toxicity [Fig 6]. The 1-year probability of DTG-TD for any reason and for toxicity was 6.2% (95%CI: 3.1-9.4) and 2.5% (95%CI: 0.9-4.2), respectively [Fig 4]. At multivariable analysis, dual regimens were associated to a lower risk of discontinuing DTG compared to standard triple therapies (aHR 0.17, p=0.037) [Table 3]. The protective effect of dual therapies maintained a trend toward significance also when triple therapies were stratified according to the backbone (aHR 0.19, p=0.064 versus ABC; aHR 0.16, p=0.061 versus TDF) whereas no difference was observed comparing the two backbones [model not shown]. The risk of discontinuing DTG regardless of the reason was almost significantly higher in patients starting the drug more recently (aHR 3.44, p=0.071)[**Table 3**].

TABLE 1 – BASELINE CHARACTERISTICS

Characteristic	ART-naïve ART-experienced		n volue	Total Population
	(n=602)	(n=455)	p-value	(n=1057)
Female gender*	110 (18.3)	113 (24.8)	0.010	223 (21.1)
Age, years**	41 (32- 49)	48 (40-56)	<0.001	44 (35-53)
Non italian born*	114 (18.9)	42 (9.2)	0.430	156 (14.8)
Risk Factor for HIV*			<0.001	
- Homosexual contacts	303 (50.9)	188 (41.3)		491 (46.8)
- Heterosexual contacts	204 (33.9)	205 (45.1)		409 (38.7)
- IDU	25 (4.2)	43 (9.5)		68 (6.5)
- Other/unknown	63 (10.6)	19 (4.2)		82 (7.8)
AIDS diagnosis*	86 (14.3)	89 (19.6)	0.022	175 (16.6)
HBV co-infection*	0 (0)	10 (2.2)	<0.001	10 (0.9)
HCV co-infection*	20 (3.3)	63 (13.8)	<0.001	83 (7.9)
CD4 cells count nadir, cell/mm3**	330 (123-541)	273 (140-373)	<0.001	293 (132-460)
Calendar year*			<0.001	
- 2015	216 (35.9)	209 (45.9)		425 (40.2)
- 2016-2017	386 (64.1)	246 (54.1)		632 (59.8)
BL CD4 cells count, cell/mm3**	350 (123-570)	640 (463-858)	<0.001	506 (260-720)
Type of regimen started*				
- Standard triple therapy	580 (96.3)	303 (66.6)	<0.001	883 (83.5)
ABC-based	280 (48.3)	227 (75.0)		507 (57.4)
• TDF-based	300 (51.7)	76 (25.0)		376 (42.6)
- Dual therapy	7 (1.2)	139 (30.5)	0.001	146 (13.8)
• 3TC+DTG	1 (14.3)	83 (59.7)		84 (57.5)
• DRV/r + DTG	5 (71.4)	20 (14.4)		25 (17.1)
• RPV + DTG	1 (14.3)	26 (18.7)		27 (18.5)
Other dual therapies	0 (0)	10 (7.2)		10 (6.9)
- Other	15 (2.5)	13 (2.9)	0.714	28 (2.7)
*n (%); ** median (interquartile range)				

TREATMENT DISCONTINUATION: FIGURE 3: PROBABILITY OF DTG-TD FOR ANY REASON (3A) AND FOR TOXICITY (3B) IN ART-NAÏVE PATIENTS— KAPLAN-MEIER **A**NALYSIS Years from starting DLG-based cAR1 Years from starting DLG-based cART




TABLE 2: PREDICTIVE FACTORS OF DTG-TD FOR ANY REASON IN ART-NAÏVE PATIENTS - COX REGRESSION MODEL

	UNADJUSTED RH	P-VALUE	ADJUSTED* RH	P-VALUE		
	(95% CI)		(95% CI)			
Female gender	2.84 (1.13-7.10)	0.026	5.32 (0.94-30.12)	0.059		
AIDS diagnosis (Yes vs No)	2.80 (1.10, 7.13)	0.030	1.17 (0.24-5.74)	0.850		
Baseline CD4 cells count, cell/mm3 (per 100 higher)	0.73 (0.55, 0.97)	0.028	0.73 (0.52-1.02)	0.069		
* adjusted for age, mode of HIV transmission, nationality, year of DTG-start and ART-backbone.						

TABLE 3: PREDICTIVE FACTORS OF DTG-TD FOR ANY REASON IN TE PATIENTS - COX REGRESSION MODEL

	UNADJUSTED RH (95% CI)	P-VALUE	ADJUSTED* RH (95% CI)	P-VALUE
Risk Factor for HIV				
- Homosexual contacts	1.00	-	1.00	-
- Heterosexual contacts	2.69 (0.84-8.60)	0.095	2.55 (0.59-10.97)	0.208
Calendar year of baseline (per more recent)	4.82 (1.48-15.73)	0.009	3.44 (0.90-13.18)	0.071
Type of regimen started				
- Standard triple therapy	1.00	_	1.00	-
- Dual therapy	0.22 (0.05-0.98)	0.048	0.17 (0.03-0.90)	0.037

* adjusted for age, nationality. AIDS diagnosis, baseline CD4 cell count, hepatits co-infection, duration of cART and virological suppression, history of previous VF and reasons for stopping previous regimen.

CONCLUSIONS:

In this large cohort, DTG showed an optimal efficacy and tolerability, with a low rate of discontinuations over the first year of treatment, both in ART-naïve and ART-experienced patients. In ARTexperienced population, starting DTG as a part of a two-drug regimen was associated with a lower risk of DTG discontinuation compared to switching to a standard triple therapy, possibly due to more options left in those on 3-drugs regimens. However, confounding by indication cannot be ruled out and we aim to re-perform this comparison after further follow-up is cumulated.

REFERENCES:

1 Raffi F et al. Lancet. 2013 2.Molina JM et al.Lancet HIV 2015 3. Walmsley S et al. JAIDS. 2015 4.Libre JM et al.CROI 2017, Abstract 44LB.

6.De Boer MG et al. AIDS 2016 7.Borghetti A et al. AIDS 2017. 8.Hoffman C.et al HIV Med

■ 95% Confidence Limits

2017. 10. Elzi L. et al. AIDS 2017

9. Bonfanti P. et al. AIDS 2017 5. Joly V et al. CROI 2017, Abstract

FUNDINGS:

This independent study has been supported by a grant from ViiV Healthcare International. ICONA Foundation is supported by unrestricted grants from BMS,

Gilead Sciences, Janssen, MSD and ViiV Healthcare Italy.

AKNOWLEDGMENTS:

95% Confidence Limits

ICONA Foundation Study Group BOARD OF DIRECTORS: A d'Arminio Monforte (President), A Antinori, A Castagna, F Castelli, R Cauda, G Di Perri, M Galli, R Iardino, G Ippolito, A Lazzarin, GC Marchetti, CF Perno, G Rezza, F von Schloesser, P Viale. SCIENTIFIC SECRETARY: A d'Arminio Monforte, A Antinori, A Castagna, F Ceccherini-Silberstein, A Cozzi-Lepri, E Girardi, S Lo Caputo, C Mussini, M Puoti. STEERING COMMITTEE: M Andreoni, A Ammassari, A Antinori, C Balotta, A Bandera, P Bonfanti, S Bonora, M Borderi, A Calcagno, L Calza, MR Capobianchi, A Castagna, F Ceccherini-Silberstein, A Cingolani, P Cinque, A Cozzi-Lepri, A d'Arminio Monforte, A De Luca, A Di Biagio, E Girardi, N Gianotti, A Gori, G Guaraldi, G Lapadula, M Lichtner, S Lo Caputo, G Madeddu, F Maggiolo, G Marchetti, S Marcotullio, L Monno, C Mussini, S Nozza, M Puoti, E Quiros Roldan, R Rossotti, S Rusconi, MM Santoro, A Saracino, M Zaccarelli. STATISTICAL AND MONITORING TEAM: A Cozzi-Lepri, I Fanti, L Galli, P Lorenzini, A Rodano, M Shanyinde, A Tavelli. BIOLOGICAL BANK INMI: F Carletti, S Carrara, A Di Caro, S Graziano, F Petrone, G Prota, S Quartu, S Truffa. PARTICIPATING PHYSICIANS AND CENTERS: A Giacometti, A Costantini, V Barocci (Ancona); G Angarano, L Monno, C Santoro (Bari); F Maggiolo, C Suardi (Bergamo); P Viale, V Donati, G Verucchi (Bologna); F Castelli, C Minardi, E Quiros Roldan (Brescia); T Quirino, C Abeli (Busto Arsizio); PE Manconi, P Piano (Cagliari); B Cacopardo, B Celesia (Catania); J Vecchiet, K Falasca (Chieti); L Sighinolfi, D Segala (Ferrara); P Blanc, F Vichi (Firenze); G Cassola, C Viscoli, A Alessandrini, N Bobbio, G Mazzarello

(Genova); C Mastroianni, I Pozzetto (Latina); P Bonfanti, I Caramma (Lecco); A Chiodera, P Milini (Macerata); G Nunnari, G Pellicanò (Messina); A d'Arminio Monforte, M Galli, A Lazzarin, G Rizzardini, M Puoti, A Castagna, G Marchetti, MC Moioli, R Piolini, AL Ridolfo, S Salpietro, C Tincati, (Milano); C Mussini, C Puzzolante (Modena); A Gori, G Lapadula (Monza); A Chirianni, G Borgia, V Esposito, R Orlando, G Bonadies, F Di Martino, I Gentile, L Maddaloni (Napoli); AM Cattelan, S Marinello (Padova); A Cascio, C Colomba (Palermo); F Baldelli, E Schiaroli (Perugia); G Parruti, F Sozio (Pescara); G Magnani, MA Ursitti (Reggio Emilia); M Andreoni, A Antinori, R Cauda, A Cristaudo, V Vullo, R Acinapura, G Baldin, M Capozzi, S Cicalini, A Cingolani, L Fontanelli Sulekova, G Iaiani, A Latini, I Mastrorosa, MM Plazzi, S Savinelli, A Vergori (Roma); M Cecchetto, F Viviani (Rovigo); G Madeddu, P Bagella (Sassari); A De Luca, B Rossetti (Siena); A Franco, R Fontana Del Vecchio (Siracusa); D Francisci, C Di Giuli (Terni); P Caramello, G Di Perri, S Bonora, GC Orofino, M Sciandra (Torino); M Bassetti, A Londero (Udine); G Pellizzer, V Manfrin (Vicenza); G Starnini, A Ialungo(Viterbo).