12° CONGRESSO NAZ
 Italian
 Conference on. Reach ouf
 AIDS and Antiviral for including all Research
 RISK OF MULTIPLE PRIMARY NEOPLASMS AND IMPACT ON SURVIVAL OF PERSON LIVING WITH HIV (PLWH)

 STUDY GROUP${ }^{1}$ HIVIAIDS Unit, INMI L. Spallanzani IRCCS, Roma; ${ }^{2}$ IRCCS Policlinico Ospedale Maggiore, University of Milano; ${ }^{3}$ Division of Infectious Disease, Hospital of Ferrara, Ferrara; ${ }^{4}$ ASST L. Sacco Hospital, University of Milano; ${ }^{5}$ Division of Infectious Disease, ASST Lecco, Lecco; ${ }^{6}$ Fondazione Policlinico A. Gemelli, Catholic University, Roma; ${ }^{7}$ ASST Santi Paolo e Carlo, University of Milano; ${ }^{8}$ Clinic of Infectious Disease, University hospital of Modena, Modena.

Introduction/Summary

\bigcirc PLWH are diagnosed with cancer, both AIDS-defining (ADC) and Non-AIDS-defining (NADC), at an increased rate over the general population. Expanding ART use and standardized cancer treatment protocols dramatically increased life expectancy, increasing the number of cancer survivors, who are at high risk of other primary neoplasms. Proportion of multiple primary cancers in PLWH has been recently reported about 14$18 \%$, close to that observed in the general population. Aims of this study were to investigate frequency, incidence rates and possible risk factors for multiple primary cancers in PLWH and to examine survival probability according to the number of cancer diagnoses (1, >=2).

Study design and Methods

O Patients (pts) in ICONA Foundation cohort enrolled between 1997 and 2019 were analyzed for relative frequencies of first or subsequent primary cancer diagnosed till 9 years before first HIV test. Comparisons of patients' characteristics between the group with single diagnosis and the group with multiple diagnosis were made using Mann-Whitney for continuous parameters and Chi square test for categorical variables. Poisson regression was used to investigate factors recorded at first cancer associated with the onset of a second diagnosis. Weighted Cox regression was used to estimate causal HR of death for patients with a second diagnosis of cancers (time-varying exposure), adjusting for the main confounders (age, gender, HCV/HBV/CMV coinfection at baseline and time-varying CD4, CD4/CD8 ratio, HIVRNA and virus-related first cancer). Baseline of this analysis was the date of first cancer.

Varabies measuredat afist diggnosis	$\substack{\text { Overall } \\ n=1177}$	Single cancer$n=1116$		
Female sender, nem	294(25.0\%)		${ }_{18}^{58.2 \%}$	
Age, yss, mediain (Ior)	${ }_{45}^{2(37-54)}$			0.892
Natanan,	104488.5\%)	$998888.59 \%)$	53 (86.9\%)	0.996
Years foom first				
median (IOR)	1.3 (0.04.8.5)	${ }^{1.3(0.048 .8 .5)}$	${ }^{0.9(0.04-10.4)}$	635
Smoke				
$\xrightarrow{\text { No }}$ Yes				${ }^{864}$
not	${ }_{144(122 \%)}$	137 (1230\%)	${ }_{7}^{2(11.505)}$	
Achol				
No	405844.40	${ }^{3888(38.880)}$	1727	0.083
Yesoccas	(16.12)	${ }_{188}^{1868.769}$	46.6%	
Abuse				
	${ }_{492}$	${ }_{455}^{2014.10 \%)}$	${ }_{35}\left(515744^{46)}\right.$	
				${ }^{138}$
${ }_{\text {18,525 }}$	${ }_{502} 50 .\left(28.44^{4 \%}\right)$	${ }_{480}^{59\left(162500_{0}\right.}$	${ }_{22}^{2(557.90 \%)}$	0.138
	${ }_{4}^{191(123.75 \%)}$	${ }_{4}^{181(123.890)}$	${ }_{0}^{10(26.380)}$	
No	$1164989.9 \%)$	1105 (990.0\%)		0.095
	$13(1.10)^{1096)}$	$111(1.008)$	$2(3,3 \%)$	
of				081
	${ }_{21414182 \%)}$	1960 (17.6\%)	${ }_{18}^{21829.50 \%)}$	
HCVCowinimoction				
	$746\left(63.4 \%^{6}\right.$	${ }^{722(64.7 \% 0)}$	$24(39.35 \%)$	8.001
Positive				
,				
	910 (77.39)	87478.38		0.001
ditue				
		(183)(16.48)		
		${ }^{341(30.850)}$	$22(6.102)$	${ }_{0}^{0.097}$
200.351	156 (132\%)	$1499\left(13.4 \%^{4}\right)$	$7(1.515 \%)$	
${ }^{3500}$	${ }^{4188(356 \%)}$	${ }^{404(36.28)}$	${ }^{14(28.30 \%)}$	
	39433.5	з38 34	11 (18.0\%)	0.013
,	53175.10	$501(44.90$	${ }^{30} 14.2929$	
Msssing	${ }^{2252}$			
${ }^{2000}$	$5288(4.4989)$	$501(44.95)^{\text {c }}$	${ }^{157(43,30)}$	${ }_{0.146}$
2004	${ }^{4242(37.0 \%)}$		18(29.95\%)	
<0.30			$14(23.0 \%)$	460
- 0.30 .0 .9 .45			${ }_{\text {c }}^{6(9.98 \%)}$	
${ }_{\text {Missing }}$	(en	${ }_{479} 7(42989 \%)$	${ }_{31}\left(50.800^{\circ}\right)$	
Nawe	${ }_{405}^{72(654.59 \%)}$	${ }_{\text {den }}^{42976.539)}$		0.408
	${ }^{2011(20042015)}$	201 (20042015)	2004(2000-2012)	<0.001
Type of cancer AIDS-related				0.614
Alos-ral	542746.08	512145	30(492\%)	
	$79986.70 \%)$	${ }_{7}^{777}(66.19$	$\left.{ }_{42} \mathbf{2} 8.9 .9 \%\right)$	0.756
Not virus-ralateo				

References

Results

- Among 1177 patients with cancer we identified 1116 $(94,8 \%)$ with single and $61(5,2 \%)$ with a second cancers; only one of 61 had a third primary cancer. Out of the population study, 294 (25%) were female and median age was 45 years. (see table 1). Follow up median duration from first cancer diagnosis was 3.2 (0.9-7.3) years, 3.0 (0.9-7.1) for single and 6.9 (1.413.6) for multiples cancers.

Results of 2

Incidence of multiple cancers was 1.1 per 100 PYFU ($95 \% \mathrm{CI} 0.8-1.4$) (1988-1999 IR 1.1, 2000-2009 IR 1.0, 2010-2019 IR 1.2) (See figure 1).

FIGURE 1. INCIDENCE OF MULTIPLE CANCERS

Kaposi sarcoma, Non-Hodgkin Lymphoma and Hodgkin Lymphoma were the 3 more common first neoplasm in the two groups ($59.8 \%, 34.6 \%$ and 13.3% in single and $54.8 \%, 41.9 \%$ and 16.7% in multiple, respectively).

Results of 3

RISK FACTORS
Comparing pts with single cancer vs those with multiple diagnoses (Table 1) HCV coinfection (20% vs 26%) and HIV RNA>200 cp/mL (45% vs 49%) were more frequent in multiple cancers group. At multivariable Poisson regression, HCV coinfection, older age and CD4<200 mmc were associated with higher probability of a subsequent diagnosis of cancer. (See table 3).

TABLE 3. FACTORS ASSOCIATED WITH MULTIPLE CANCERS AT MULTIVARIABLES ANALYSIS

Results of 4

SURVIVAL
OThe 5 -years survival probability was 72.6% ($95 \% \mathrm{Cl}$ $69.6 \%-75.4 \%)$ and $65.5 \% ~(95 \% \mathrm{Cl} 51.7 \%-76.2 \%)$ in single and multiple cancers, respectively. The causal HR of death for pts with a second cancers was 4 -fold higher than those who had single cancer (HR 4.09 [$95 \% \mathrm{Cl} 2.06$ -8.13]) after adjusting for main confounders.
FIGURE 2. SURVIVAL PROBABILITY

Conclusion

- Multiple primary cancers occurred in our cohort at a relatively low frequency than previously reported and stable over time.
Older age, HCV coinfection and immunological impairment seem to increase risk of subsequent neoplasms. Role of oncogenic viruses as persistent predisposing factor could be responsible for the relative frequencies of multiple cancers.
\bigcirc The finding of worse survival in pts with multiple neoplasms, suggests the importance of early identification of risk group and of appropriate prevention strategies.

