

Dettaglio abstract

N. pgm: OC 57

Title: BIC/FTC/TAF is effective on PLWH with low CD4 counts: real-life data from the Icona cohort

Presentation type: Oral Communication

Session/Topic Antiretroviral Therapy III

Authors: A. d'Arminio Monforte1, A. Tavelli2, F. Maggiolo3, A. Castagna4, F. Ceccherini Silbertein5, A. Cozzi-Lepri6, E. Girardi7, S. Lo Caputo8, C. Mussini9, M. Puoti10, A. Gori11, A. Antinori12 for Icona Foundation Study Group

Affiliation: 1Department of Health Sciences, Clinic of Infectious Disease, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy, 2Icona Foundation, Milan, Italy, 3Infectious Diseases, ASST Papa Giovanni XXIII, Bergamo, Italy, 4Department of Infectious Diseases, IRCCS Ospedale San Raffaele, University Vita-Salute San Raffaele, Milan, Italy, 5Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy, 6Centre for Clinical Research, Epidemiology, Modelling and Evaluation (CREME), Institute for Global Health, UCL, London, UK, 7Department of Epidemiology and Pre-Clinical Research, National Institute for Infectious Diseases L. Spallanzani, Rome, Italy, 8Infectious Diseases Department, University of Foggia, Foggia, Italy, 9Infectious Diseases Unit, Azienda Ospedaliero-Universitaria Policlinico di Modena, University of Modena and Reggio Emilia, Modena, Italy, 10Department of Infectious Diseases, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy, 11Infectious Diseases Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy, 12HIV/AIDS Department, National Institute for Infectious Diseases L. Spallanzani, Rome, Italy

Abstract

Methods: Observational study of patients enrolled in the Icona cohort starting BIC/FTC/TAF as first line or switch ART. Naïve PLWH were defined as late presenters (LP) with CD4 200 copies/ml or 1 HIV-RNA >1000 copies/mL after 6 months for ART-naïve). Statistical analyses included descriptive statistics, and standard survival analysis. Cox-regression models were used to investigate the role of LP/VLP (ARTnaïve) and the role of CD4 at switch (ART-experienced) on the risk of TF.

Results: 310 ART-naïve and 1115 virologically controlled ART-experienced patients included (Table1). ART-Naïve PLWH: median HIV-RNA 4.96-log10 copies/ml (4.39-5.56), median CD4 290 cells/mmc (103-496), 178 subjects LP (57.4%) and 124 VLP (40.0%). In median follow-up of 7.5 months, 38 patients underwent TF (12.2%). TF occurred in 21 LP (11.8%) vs 17 non-LP (12.9%) p=0.77 and in 16 VLP (12.9%) vs 22 non-VLP (11.8%), p=0.78 Out of 38 TF, 4 were VF and 34 were TD; main reasons for TD are showed in Table2A.The overall 1-year probability of TF was 13.2% (95%CI 9.1-19.0). In the Cox regression models after adjusting for HIV-RNA, sex, Italian and mode of HIV transmission there were no significant differences in the risk of TF both for LP (vs non-LP aHR=1.24; 95%CI: 0.61-2.50) and VLP (vs non-VLP aHR=1.76; 95%CI: 0.87-3.56).

ART-experienced PLWH: median CD4 703 cells/mmc (505-933), 120 PLWH had CD4 =350 cells/mmc, p=0.61. Out of 89 TF, 12 were VF and 77 as TD, main reasons for TD are showed in Table2B. Overall the 1-year probability of TF was 4.9% (3.7-6.5). In the Cox regression models after adjusting for calendar year of first cART, CD4 nadir and duration of viral suppression, having a CD4 cell count

Table 1. Main patients' characteristics

	ART-naive		ART-experienced	
	N=310		N=1,115	
Italian, n(%)	217	70	939	84.2
Gender, Female, n(%)	51	16.4	209	18.7
Year of BIC start, median (IQR)	2020	2019-2020	2019	2019-2020
Year HIV diagnosis, median (IQR)	2020	2019-2020	2013	2008-2016
Year cART start, median (IQR)	2020	2019-2020	2015	2011-2017
Age, years, median (IQR)	41	31-51	47	38-55
Age, >50 years, n(%)	86	27.7	472	42.3
Italian Geo Zone, n(%)				
Northern	192	61.9	696	62.4
Central	85	27.4	345	30.9
Southern/Islands	33	10.6	74	6.6
Mode of HIV Transmission, n(%)				
Heterosexual	119	38.4	405	36.3
IVDU	15	4.8	87	7.8
MSM	157	50.6	572	51.3
Other/Unknown	19	6.1	51	4.6
HCVAb positive status, n(%)	16	5.2	110	9.9
HBsAg positive status, n(%)	1	2.3	41	3.7
Smoker, Yes, n(%)	108	34.8	474	42.5
CDC C-stage, n(%)	39	12.6	176	15.8
CD4, cells/mmc, median (IQR)	290	103-496	703	505-933
CD4<200 cells/mmc, n(%)	120	38.7	22	2
CD4<350 cells/mmc, n(%)	177	57.1	120	10.8
HIV-RNA, log10 copies/mL, median (IQR)	4.96	4.39-5.56	1.00	0.00-1.43
HIV-RNA >5 log10 copies/mL, median (IQR)	152	49	0	0
Total Cholesterol, median (IQR)	159	138-187	193	169-218
LDL cholesterol, median (IQR)	103	81-124	120	100-144
HDL cholesterol, median (IQR)	41	33-49	49	41-58
Triglycerides, median (IQR)	98	72-142	116	83-169
Serum Glucose, median (IQR)	87	80-94	87	80-94
eGFR, CKD-EPI, ml/min/1.73m2, median	106	92.2-117.4	89.5	77.3-101.8
BMI Kg/m2 median (IOR)	23	20 9-24 8	24.2	22 1-26 8
Diabetes diagnosis, n(%)	11	3.5	59	5.3
CVD diagnosis n(%)	3	1	18	13
NADM diagnosis, n(%)	8	2.6	33	3
CKD diagnosis. n(%)	10	3.2	151	13.5
ESRD diagnosis, n(%)	0	0	1	0.1
ESLD diagnosis, n(%)	0	0	2	0.2
Follow-up on BIC, years, median (IOR)	0.62	0.32-1.08	1.11	0.80-1.38
Years of VS before switch, median (IQR)			4.3	2.4-7.5
Class previous regimen, n (%)				
INSTI-based			958	85.9
NNRTI-based			83	7.4
bPI-based			56	5.0
other/dual			18	1.6

Table 2. Reasons for BIC/FTC/TAF discontinuation in (A) ART-naïve and (B) ART-experienced virologically controlled PLWH who underwent TF

(A) ART-NAIVE	n	percent
VIROLOGICAL FAILURE	2	5.9%
DEATH	1	2.9%
OTHER	7	20.6%
SIMPLIFICATION	11	32.3%
PATIENT'S DECISION	0	0.0%
TOXICITY	13	38.2%
Othertoxicities	3	
Clinical contraindications	1	
DDI	3	
GI intolerance	2	
Allergic reactions	2	
CNS symptoms	1	
LiverToxicity	1	
(B) ART-EXPERIENCED	n	percent
VIROLOGICAL FAILURE	3	3.9%
OTHER	19	24.7%
SIMPLIFICATION	31	40.3%
PATIENT'S DECISION	1	1.3%
TOXICITY	23	29.9%
Arthro-myalgia	1	
Clinical contra-indications	1	
Other toxicities	2	
DDI	1	
GI intolerance	2	
Allergic reactions	4	
CNS symptoms	4	
PNS symptoms	3	
Renal toxicity	3	
Lipidic Metabolism toxicity	2	